21 produce to a security of the second secon

COMPUTER CODES FOR THE EVALUATION OF SPACE RADIATION HAZARDS

VOL. 3 APOLLO SECTOR ANALYSIS
D2-90418-3

Prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER

XEROX \$ 3.W.M. MICROFILM \$

Contract NAS 9-1393

By Dale R. Ferguson

Aero-Space Division THE BOEING COMPANY Seattle, Washington

TABLE OF CONTENTS

	PAGE
INTRODUCTION	. 3
METHOD OF DETERMINING TISSUE THICKNESS FOR EACH SOLID ANGLE	4
APOLLO ANALYSIS	8
DERIVATION OF FRACTIONAL SOLID ANGLE FORMULA	19
APPENDIX	21
SECTOR ANALYSIS COMPUTER CODE DESCRIPTION	21
GENERAL INFORMATION	21
INPUT PREPARATION AND OUTPUT DESCRIPTION	· 22
OPERATING INFORMATION	22
REFERENCES	26

LIST OF FIGURES

FIGURE	, TITLE	PAGE
1.	Geometry of NASA and Boeing coordinate system	6
2.	Map of solid angles	7
3.	Top view of command module azimuthal angles	9
4.	Top view of service module azimuthal angles	10
5.	Geometry for fractional solid angle derivation	11.
6.	Side view of Apollo vehicle	20
	LIST OF TABLES	
TABLE	TITLE	PAGE
1	Apollo Sector Analysis Data	12

INTRODUCTION

29365-

In order to determine if additional shielding against space radiation is necessary in certain areas of a spacecraft, a detailed sector analysis is required. The spacecraft's inherent radiation shielding for each sector, the body fissue thickness in each sector, and the fractional solid angle for each sector are inputs for computer programs which calculate the dose at a specified body point. Three body points were used and the average tissue thickness for each solid angle as defined by NASA was determined.

METHOD OF DETERMINING TISSUE THICKNESS FOR EACH SOLID ANGLE

For determining tissue thicknesses at a specific body point, a map of the solid angles prescribed by NASA was used as an overlay on the tissue isothickness curves of D. L. Dye (Ref. 1). However, because of the different reference axes used in defining the angles of direction or solid angles about a point, it was necessary to make a transformation. Specifically, a direction or solid angle, (Ψ, θ) defined by NASA was transformed to that of θ , \neq as described in Ref. 1. In order to avoid confusion of the two θ 's, NASA's θ was redesignated ω . Thus, the transformation is one from Ψ , ω to θ , ϕ .

Referring to Fig. 1, a satisfactory transformation was obtained by using the following equations as a pair:

$$\tan \phi = \frac{QR}{OR} = \frac{PR}{OR} \frac{QR}{PR} = \tan \omega \sin \psi$$

$$\tan \theta = \frac{PQ}{OQ} = \frac{PR}{OR} \frac{OR}{OQ} \frac{PQ}{PR} = \tan \omega \cos \phi \cos \psi$$

Hence, given a solid angle outlined by ω_1 , ω_2 , ψ_1 , and ψ_2 , where the ψ 's are angles measured from the z-axis in the y-z plane such that $\Delta \psi = \psi_2 - \psi_1$, and the ω 's are θ_1 and θ_2 as given by NASA, a θ , ϕ map of the solid angle can be obtained. Figure 2 is an example of such a map.

To facilitate matters, a short computer program has been written for the transformation (this is described in the appendix). In this program, one needs only to feed in the ω 's and ψ 's and the corresponding θ 's and ϕ 's are returned. However, due to the program's limitation, all angles ω , ψ are made to be

5

between 0 and 90 degrees. For example, when ω is between 90 and 180 degrees, $180-\omega$ is used. Plotting on a θ , ϕ map is accomplished by noting in which quadrant a particular solid angle falls. It is not necessary to feed into the program the angle $\omega = 90^{\circ}$, since it is easily seen from the geometry that when $\omega = 90^{\circ}$, then $\phi = 90^{\circ}$, and $\theta = 90^{\circ} - \psi$.

Once the θ , ϕ map of the solid angles has been established, it is superimposed on the tissue isothickness curve of the specific body point, and the average tissue thickness for each solid angle is obtained. If greater accuracy is desired when large variations occur in tissue thickness in a solid angle, the solid angle should be further subdivided.

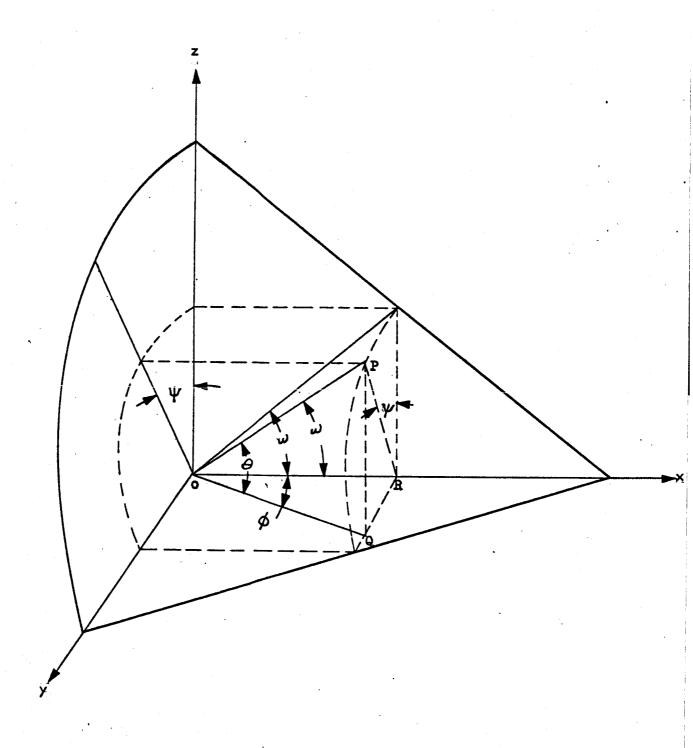


FIGURE 1. Geometry of NASA and Boeing coordinate system.

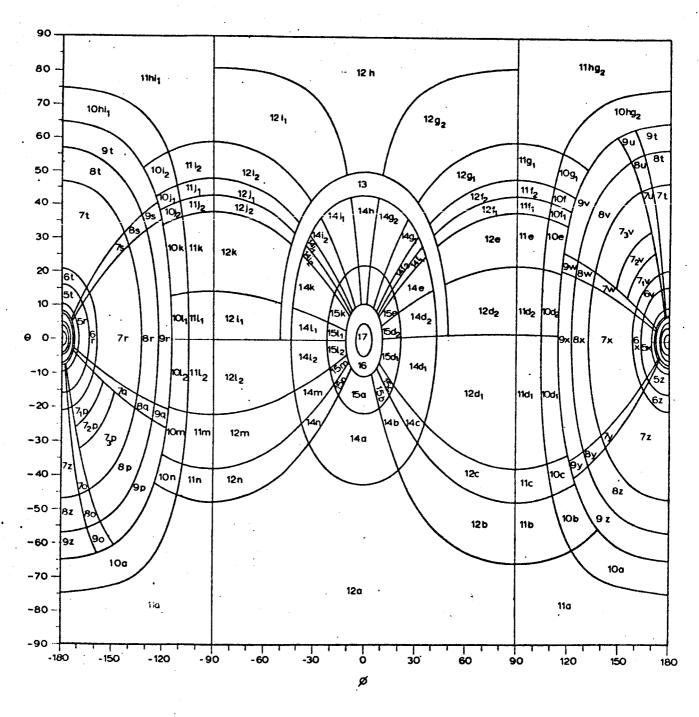


FIGURE 2. Map of solid angles.

APOLLO ANALYSIS

The first step in this analysis was determination of the angles ψ from the given values of $\Delta \Psi$. For lack of additional information it was assumed that for the command module the sections g and i were equal, g_1 and i_2 were equal, and that the z-axis divided the section h in half. For the service module, it was assumed that the sections r and x were equal, s and u were equal, and o, q, and y were equal. Further, after measuring the drawing supplied, the section o was taken to start at 10 degrees from the z-axis. Once these assumptions were made, Figs. 3 and 4 with the angles ψ were easily obtained. These values of ψ along with the values of ω can then be fed directly into the computer program for transformation to the corresponding values of ϕ and θ .

These values of ϕ and θ are plotted on transparent paper to form a map (Fig. 2). This map was then placed over the tissue isothickness plots of the three specified body points, and the average tissue thickness for each solid angle was listed. In cases where the solid angle is composed of a group of sections (for example, the solid angle $10 \, f_1 \, i_2$) and the tissue thickness for each of these sections is markedly different, then the smallest value of the group was used to obtain a conservative radiation dose.

The three body points that were used were the Chest 0, Eye, and Waist 4 of the seated 75-percentile man (see Ref. 1 for definition of these points and the 75-percentile man).

Table 1 presents all the information needed for the radiation dosage computer code. Figure 5 is a side view defining θ .

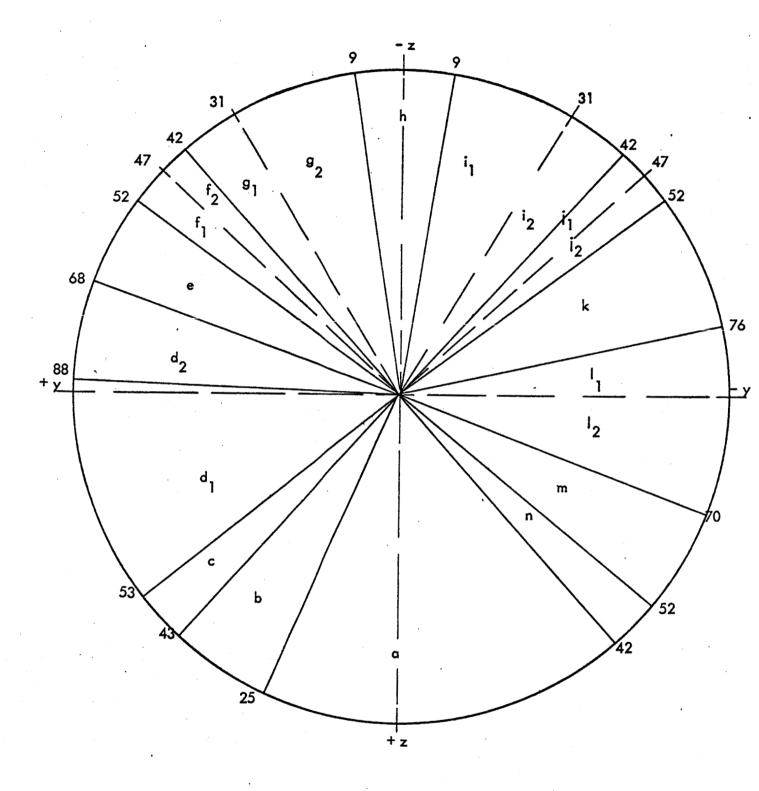


FIGURE 3. Top view of command module azimuthal angles.

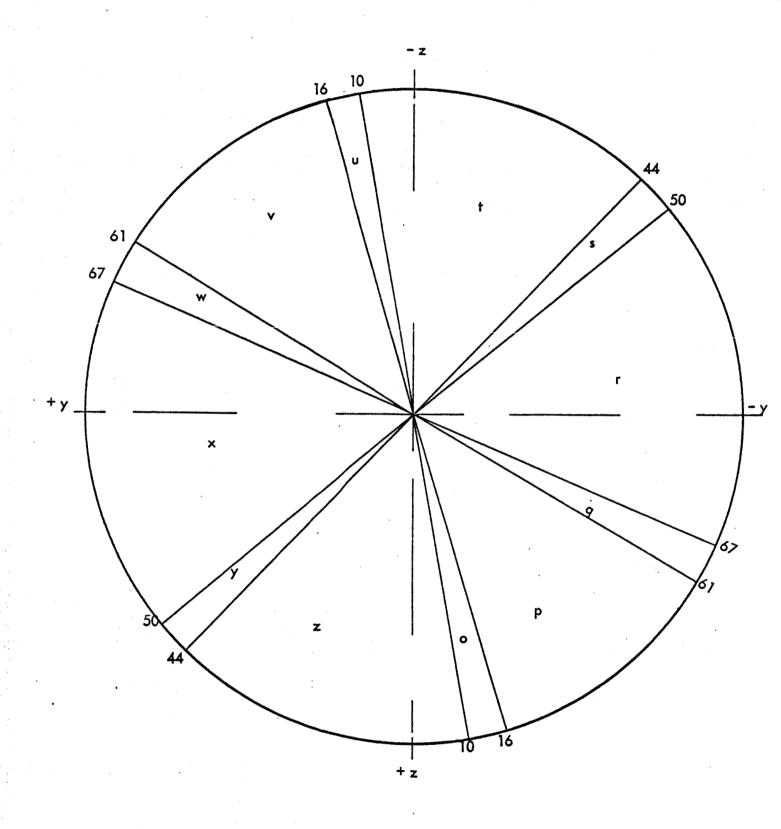


FIGURE 4. Top view of service module azimuthal angles.

FIGURE 5. Side view of Apollo vehicle.

TABLE 1. Apollo Sector Analysis Data

SOLID 81	i	92	λ V	ΔΩ ₂ × 10 ²	SHIEL THICK	SHIELDING THICKNESS		TISSUE	SS
					FUELED	UNFUELED	EYE	WAIST	CHEST
	degrees	degrees	degrees	steradians	gm/cm ²	gm/cm ²	gm/cm ² g	gm/cm^2	gm/cm ²
	178		360	0.03048	141.04	125.24	20	∞	25
2	176	178	360	0,09151	116.92	101.49	19	ω	25
က်	175	176	360	0.06852	50.05	35, 24	19	&	52
- ຕ໌	173	175	360	0.18199	44.79	29.99	81	œ	R
4 opqyz	172	173	711	0.03708	44.08	31.56	18	&	22
4 stu	172	173	99	0.02093	44.08	31.56	18	8	52
4 ×	172	173	9	0.00191	44.08	31.56	20	∞	52
4 rx	172	173	126	0.03995	90.89	31.34	18	œ	82
4	172	173	45	0.01424	89.89	77. 275	20	· ထ	22
5 tz	164	170	108	0.35324	184.82	20.82	20	7	25
5 7	164	170	126	0.41213	243. 19	21.00	18	7	2 5
5 ogsuwy	164	170	%	0.11777	24.95	20.77	18	7	25
5, ogsuwy	170	172	%	0.02730	24.95	20.77	18	7	25
	170	172	45	0:03414	41.08	32.72	8	7	25
. ^;	170	172	45	0.03414	127.18	118.82	18	ω	25
, 5, tz	170	172	108	0.08189	87.99	43.93	8	7	25
_									

TABLE 1.	TABLE 1. Apollo Sector Analysis Data (cont'd)	or Analysis	Data (cont	(p,					
SOLID	91	92	→ ∇	Δ. 102 × 102	SHIEL THICK	SHIELDING	Ė	TISSUE	. 83
770				:	FUELED	UNFUELED	EYE	WAIST	CHEST
	degrees	degrees	degrees	steradians	gm/cm ²	gm/cm ²	gm/cm g	gm/cm ²	gm/cm ²
, או	170	172	126	0.09557	133. 17	34.11	81	7	52
5, pv	167	120	06	0.13051	112.09	106.87	18	7	z
5 2 ·	164	167	8	0.16385	146.59	110.78	17	7	23
3 t 6 tz	159	75	108	0.41524	32.49	68.9	70	8	52
× 9	159	72	126	0.48439	413.09	7.09	13	7	22
6 ogsuwy	159	164	38	0.13839	5.68	5.68	91	7	23
0.0	162	<u>\$</u>	45	0.06374	94.59	22.79	14	7	52
- °	159	162	45	0.10926	103.19	9.59	15	7	ß
. 7 9	159	164	45	0.17300	124.39	52, 59	20	ω	52
7 %	133	159	126	4.40263	224.36	6.3	Ξ	٥	52
7 +	133	159	54	1.88686	143.27	6.27	71	ω	82
7 2	133	159	3	1.88686	143.56	6.54	50	2	&
7 000	133	159	18	0.62898	5.61	5.61	12	œ	12
wos Z	133	159	18	0.62898	5.32	5.32	7	٥	22
7. pv	153	159	06	0.53214	69.17	12.14	15	œ	22
7 d 6/2	146	153	45	0.38730	15.09	8.59	1	7	77

TABLE 1. Apollo Sector Analysis Data (cont'd)

	**************************************		**************************************							
SOLID ANGLE	6	9	Λ	$\Delta \Omega_2 \times 10^2$	SHIEL	SHIELDING THICKNESS		TISSUE THICKNESS	55	
					FUELED	UNFUELED	ΕΥE	WAIST	CHEST	
	degrees	degrees	degrees	steradians	gm/cm ²	gm/cm ²	gm/cm	gm/cm ²	gm/cm ²	
7,0	146	153	45	0.38730	14.80	8.31	18	1	52	
7 ₂ P	133	146	45	0.91904	10.55	7.31	7	7	8	
, s , s	133	146	45	0.91904	10.26	7.02	17	4	25	
8 p	123	133	45	0.85848	7.29	7.29	•	7	32	
>	123	133	45	0.85848	6.92	6.92	15	19	.61	
<u>د</u> 2	123	133	126	2.40380	6.46	6.46	7	Ξ	5 %	
8 oqy	123	133	18	0.34338	9.01	9.01	12	10	31	•
%ns 8	123	133	18	0.34338	8.63	8.63	Ξ	7	22	
8 +	123	133	54	1.03021	6.57	6.57	2	٥	25	
8 z	123	133	2	1.03021	6.95	6.95	8	15	37	
9 opqyz	115	123	117	1.98283	11.12	11.12	15	13	%	
9 stuvw	115	123	117	1,98283	10.45	10.45	0	17	18	
8 ک	115	123	126	2.13530	10.69	10.69	9	13	%	
10 a	105	115	29	1.52423	29.254	29, 254	18	Ξ	55	
10 b	105	115	18	0.40951	20.695	20.695	35	90	ઝ	
10 c	105	115	0	0. 22751	11.384	11.384	15	99	**	

TABLE 1. Apollo Sector Analysis Data (cont'd)

SOLID	6	92	λV	$\Delta \Omega_2^{\circ}$ × 10 ²	SHIELDING	OING NESS		TISSUE THICKNESS	SS	
					FUELED	UNFUELED	EYE	WAIST	CHEST	
	degrees	degrees	degrees	steradians	gm/cm ²	gm/cm ²	gm/cm	2 gm/cm ²	gm/cm ²	•
	105	115	39	0.88721	17.106	17.106	2	90	18	
^	105	115	20	0.45502	15.835	15.835	Ξ	27	91	
1	105	115	91	0.36399	13.438	13,438	Ξ	30	13	
5.	105	115	10	0.22751	10, 282	10.282	7	12	13	
10 f ₂ g ₁ i ₂ i ₁	105	115	32	0.72798	5.934	5.934	က	12	12	
0 g ₂ hi ₁	105	115	62	1.41051	12, 492	12.492	3	15	0	
•	105	115	24	0.54598	14.756	14.756		. 01	13	
	105	115	8	0.77349	17.666	17.666	0	.	17	
m 01	105	115	18	0.40951	14.642	14.642	0	5	8	
	105	115	2	0.22751	15.364	15,364		9	发	
	8	105	29	2, 40849	44.686	44.686	တ္တ	17	9	
	06	105	18	0.64704	25.954	25.954	90	90	15	
	%	105	01	0,35945	13, 252	13, 252	6	33	12	
	8	105	39	1.40192	10.797	10, 797	ω	8	9	
	%	105	20	0.71898	11.969	11.969	∞	30	7	
	06	105	19	0, 57519	9,519	9.519	٥	35	ო	

TABLE 1. Apollo Sector Analysis Data (cont'd)

SOLID θ_1 θ_2 $\Delta \Psi$ ANGLE
degrees degrees steradians
105 10 0.35945
105 32 1.15029
105 62 2. 22873
105 24 0.86270
105 34 1, 22223
105 18 0.64704
105 10 0.35945
67 6.80563
90 18 1.82837
90 10 1.01573
90 39 3,96145
90 20 1.78556
90 21 1.87478
90 76 6.78502
90 18 1.60699
90 5 0.44635

TABLE 1. Apollo Sector Analysis Data (cont'd)

					The second secon				
SOLID	SOLID θ_1 θ_2 $\Delta \Psi$ Δ ANGLE ×	92	→ ∇	Δη. × 10 ²	SHIEL THICK FUELED	SHIELDING THICKNESS ED UNFUELED	I EYE	TISSUE THICKNESS WAIST C	SS CHEST
	degrees	degrees	degrees	steradians	gm/cm ²	gm/cm ²	gm/cm ²	2 gm/cm	gm/cm ²
12 k	22	8	74	2, 14263	8.379	8.379	0	©	0
121,	20	8	14	1. 24984	10.792	10, 792	0	9	0
121,	43	8	70	2.03154	10.792	10.792	0	5	0
12 m	43	8	18	1.82837	7,982	7,982	0	5	0
12 n	43	%	10	1,01573	11. 102	11.102	0	%	· 0
13	43	50	180	2.21401	13.787	13,787	0	9	0
14 a	22	43	42	1.82233	11.304	11.304	0	20	0
14 b	22	43	18	0.48956	9.490	9.490	0	18	0
14 cn	22	43	20	0.54399	4.320	4.320	0	v	0
14 d	75	43	59	1.60476	17.378	17.378	0	12	0
14 e	22	43	91	0.43521	20.140	20.140	0	4	0
14 k	22	43	24	0.65277	20.140	20.140	0	9	0
14 fj	22	43	20	0.54399	15.402	15.402	0	9	0
14 gi	22	43	99	1,79511	21.897	21.897	0	©	0
14 h	22	43	18	0.48956	17.792	17,792	0	12	0
14	22	43	8	0.92477	12.422	12.422	0	9	0

TABLE 1. Apollo Sector Analysis Data (cont'd)

•									
SOLID	θ1	92	4∇	ΔΩ2 × 102	SHIEL	SHIELDING		TISSUE	SS
				:	FUELED	UNFUELED	EYE	WAIST	CHEST
	degrees	degrees	degrees	steradians	gm/cm ²	gm/cm	gm/cm	gm/cm ² gm/cm ²	gm/cm ²
14 m	22	£3	18	0.48956	21, 236	21.236	0	9	0
15 ab	=	22	85	0.64283	11, 123	11.123	0	ω	
15 d	=	22	59	0.44619	9.791	9,791	0	٥	0
15 Լա	=	22	52	0.39327	9.791	9.791	0	7	0
15 e	=	22	16	0.12104	9.231	9.231	0	01	· •
15 k		22	24	0.18152	9, 231	9.231	0	7	0
15 cn	Ξ	22	8	0.15128	4.043	4.043	0	∞	0
15 fi	=	22	20	0.15128	3,057	3.057	0	ω	0
15 gi		22	99	0.49911	5.841	5.841	0	∞	0
15 h	Ξ	22	18	0.13616	1, 781	1.781	0	6	0
16	S.	Ξ	360	0,72798	2.833	2.833	0	ω	0
17	0	ro.	360	0, 19051	3,4845	3,4845	0	∞	0
								-	

DERIVATION OF FRACTIONAL SOLID ANGLE FORMULA

The following derivation will facilitate processing the NASA angles θ_1 , θ_2 , and $\Delta \psi$, directly into the computer program from Table 1. Using a unit sphere (see Fig. 6) a fractional solid angle can be defined as

$$dA = \sin\theta d\theta d\Psi$$

Area of a zone of the sphere =
$$\int_{0}^{2\pi'} \int_{\theta_{1}}^{\theta_{2}} \sin\theta \, d\theta \, d\psi \qquad \theta_{1} \leq \theta_{2}$$

$$= 2\pi'(\cos\theta_{1} - \cos\theta_{2})$$

then upon dividing by $4\,\mathrm{T}$ and further dividing the zone, the fractional solid angle

$$\Delta \Omega = 1/2 \left(\cos \theta_1 - \cos \theta_2\right) \frac{\Delta \Psi}{360}$$
 $\Delta \Psi$ in degrees so that
$$\sum \Delta \Omega = 1.$$

The computer code described in the appendix calculates $\Delta \Omega$ for each sector and, if desired, an instruction card can be inserted into the deck to punch this data on IBM cards in the same format as the radiation dosage computer codes.

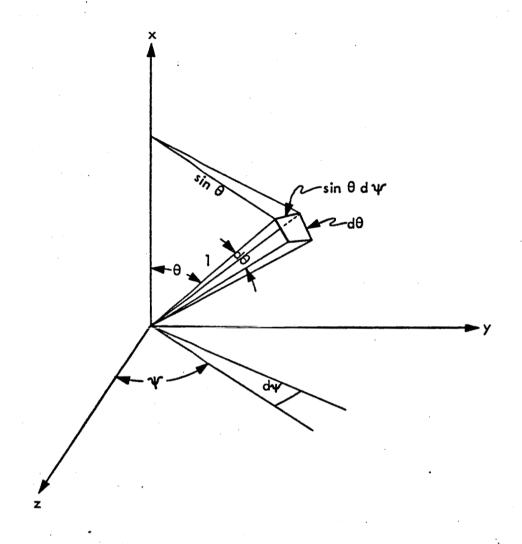


FIGURE 6. Geometry for fractional solid angle derivation.

APPENDIX

SECTOR ANALYSIS COMPUTER CODE DESCRIPTION

GENERAL INFORMATION

Purpose

The code does essentially two things. It first calculates the fractional solid angle (sometimes referred to as the weighting factor), $\Delta \Omega$, for each sector, and then it transforms the given coordinate system from one in Ψ and ω to one in φ and θ .

Limitations

Due to the program's limitations, the angles ϕ and θ must lie between -90 and +90 degrees; hence, all input angles are assumed to be in the first quadrant and $\omega \neq 90$. For the case when $\omega = 90^{\circ}$, we see from the geometry that $\phi = 90^{\circ}$ and $\theta = 90^{\circ} - \psi$.

Method

The program is coded in FORTRAN for the IBM 7094 and conforms to the FORMON system. The equations to be solved are:

For the first part,

$$\Delta \Delta = 1/2 (\cos \theta_1 - \cos \theta_2) \frac{\Delta \Psi}{360}$$

For the second part, the pair of equations,

$$\phi = \tan^{-1} (\tan \omega \sin \psi)$$

$$\theta = \tan^{-1} (\tan \omega \cos \phi \cos \psi)$$

INPUT PREPARATION AND OUTPUT DESCRIPTION

Input is from punched IBM cards, punched according to the section on operating information. Input parameters are θ_1 , θ_2 , $\Delta \psi$, ω , and ψ (all angles are in degrees). The output is on standard IBM output paper. Output parameters are θ_1 , θ_2 , $\Delta \psi$, $\Delta \Omega$, $\sum \Delta \Omega$, ψ , ψ , ψ , and θ .

OPERATING INFORMATION

The deck setup consists of the following arrangement:

- 1. FORMON control cards
- 2. Program deck
- 3. Transfer to data card
- 4. Data (consisting of the following):
 - a. Card type i
 - b. Card type II
 - c. Card type III
 - d. Card type IV
 - e. Card type V
 - f. Card type VI
 - g. Card type VII

Where each of the card types are punched as follows:

a. Card type I

Columns	<u>Format</u>	<u>Variable</u>
1-6	Fixed point integer with no decimal point, punched right adjusted in field.	Number of $\triangle - \triangle $'s (also No. of θ_1 's, θ_2 's, and $\triangle \Psi$'s)

b. Card type II (may be more than one card)

Columns	Format	<u>Variable</u>
1-6	XX. XX or any arrangement of five numbers and a decimal point.	lst Δ Ψ
7-12	a a constant of the constant o	2nd \triangle Ψ
13-18	n .	3rd Δ $oldsymbol{\Psi}$
19-24	H	4th △ 🌱
25-30	11	5th △ Ψ
31-36	u	óth Δ Ψ
37-42	u	7th Δ Ψ
43-48	a a	8th 🛆 🌱
49-54		9th∆ ¥
55-60	H .	10th
61-66		11th∆ Ψ
67-72	H	12th ∆ Y

As many cards as necessary may be used to include all the $\Delta\Psi$'s for a particular program run up to a maximum of 200 $\Delta\Psi$'s. (The number of $\Delta\Psi$'s must coincide with the number on card type 1).

c. Card type III (may be more than one card). Same as card type II

except the values of θ are used in place of $\Delta \psi$. (The same restrictions apply.)

d. Card type IV (may be more than one card). Same as card type II except the values of θ_2 are used in place of $\Delta \Psi$. (The same restrictions apply.)

e. Card type V

Columns	Format	<u>Variable</u>
1-6	Fixed point integer with no decimal point, punched right adjusted in field.	Number of ψ 's
7-12	24	Number of w's

f. Card type VI (may be more than one card)

Columns	mns Format		<u>Variable</u>	
1-10	XX. XX or any arrangement of nine numbers and a decimal point.	lst	w	
11-20	11	2nd	ω	
21-30	##	3rd ·	W	
31-40	11	4th	ω	
41-50	31	5th	ω	
51-60	n .	6th	w	

As many cards as necessary may be used to include all the ω 's for a particular program run up to a maximum of 50 ω 's. (The number of ω 's must coincide with the number on the card type V.)

g. Card Type VII (may be more than one card). Same as card type VI except the values of ψ are used in place of ω . (The same restrictions apply as in card type VI.)

Machine Setup and Run Information

The console switch settings are normal. No special tape units are required other than the normal input tape 5 and the output tape 6 requirements. There is no on-line equipment required.

The running time (including compilation time) for 108 values each of θ_1 , θ_2 , and $\Delta \Psi$, 19 values of Ψ and 23 values of ω was 0.66 minutes. There were 428 lines of output. There are no programmed success or error stops. Program success transfers control back to the FORMON monitor.

Program Information

Storage assignments are:

Library routines called by the program are: (FPT), (TSHM), (RTN), (STHM), (FIL), COS, SIN, TAN, ATAN.

Calculation to verify computer program:

Input	Output	Hand Calculation
ω = 22°	$\phi = 15.1281^{\circ}$	$\phi = 15.13^{\circ}$
Ψ = 42°	θ = 16. 1640°	θ = 16. 16°
∆¥= 24°	$\triangle = 0.0018148$	$\Delta \Omega = 0.001815$
θ _] = 11°		
θ ₂ = 22°		

REFERENCES

1. Dye, D. L., "A Geometrical Analysis of the Seated Human Body for Use in Radiation Dosage Calculations," D2-90107, The Boeing Company, July 1962.